A Case Study on Position-Based Routing Protocol for a Wireless Mobile Ad-hoc Network

Maritime Internet Connectivity

Satellite

Highly Reliable and Robust

Uplink and Downlink bandwidth Spectrum Availability Latency issues High Cost

IEEE 802.16 WiMax

Internet access Low Cost Required bandwidth Transmission range High throughput

Introduction

Node – a router and hosts forwarding packets

Dynamically changing Mesh network Point to Multipoint Hop (PMP) Mobile Ad-Hoc Network (MANET)

Introduction System Components

Internet Gateway (IGW)

Provides internet Access Mobile nodes detect IGW **Location Service**

Geocasting

Global Positioning System External Service Used by the sender Current position information Geographic messaging Addressing model <*latitude, longitude*>

For Mobile Ad-hoc Networks

Topology Based	Position Based		
Maintain routing information for all routes	Does not require the maintenance of routes		
Require large bandwidth if network changes	Does not require large bandwidth		
Forwarding decision is determined from the source node	Forwarding decision is based on the position of destination and the node's immediate one hop neighbour		
	Eg. Fleetnet – Internet on the Road Inter-vehicle communication		

Background Position-Based Algorithm

For Mobile Ad-hoc Networks

	MFR	MFR+	
Most Forward with fixed radius R		Positively most forward with fixed radius R	
Maximum forward progress within the Transmission range		Only members with positive progress are admitted	
\bigotimes			

Simulation program in C++

- O Node for next hop
- O Source Node

R

- Internet Gateway / Base Station
- t Interpolation interval time (sec)

Each node is referred as MMSI Contact Nodes for next hop

Transmission radius (km)

Simulation

MMSI 565156000 Last seen at 14/6/2006 0:56:13 UTC Name AEGEAN BREEZE 1 Latitude N 1°17.648' Callsign 9VAG8 Longitude E 103*55.883 IMO number 9314466 Heading 212° Length 80 m Speed 0.1 knots Beam 12 m Destination SINGAPORE Draught 5.0 m ETA 5/4/2006 21:00:00 UTC Vessel Type Tanker Status Under way using engine Extra Info N/A MMSI 564313000 Last seen at 14/6/2006 0:53:38 UTC Name AMANDA STAR Latitude N 1°15.677' Callsign 9v6037 Longitude E 103°53.094' IMO number 9017147 Heading 11° Length 0 m Speed 0.0 knots Beam 0 m Destination Draught 4.2 m ETA 31/12/9999 23:59:59 UTC Vessel Type Tanker Status Under way using engine Extra Info

AIS Format \rightarrow 7 data

MMSI Date	Time Lat L	Long Head Speed
211233290	14/6/2006	6:2:13 1.21987 103.891 30 5.4
211233290	14/6/2006	6:15:53 1.23998 103.89 338 4.1
211233290	14/6/2006	6:30:52 1.24263 103.888 14 0.3
211233290	14/6/2006	6:45:23 1.2427 103.889 89 0.2
211233290	14/6/2006	6:59:44 1.2428 103.888 144 0.2
211233290	14/6/2006	7:15:37 1.24263 103.888 155 0.1
211233290	14/6/2006	7:27:38 1.24278 103.888 157 0.2
211233290	14/6/2006	7:44:8 1.24267 103.888 101 0.1
211233290	14/6/2006	7:59:47 1.2426 103.888 104 0.1
211233290	14/6/2006	8:15:12 1.24235 103.888 107 0.1
211233290	14/6/2006	8:30:27 1.24293 103.889 86 0.1
211233290	14/6/2006	8:45:36 1.23908 103.873 295 11.5

Total Ships – **317 MMSI** Ships above 1 knot – **147 MMSI**

At t

At 2t

At 3t At 4t

MMSI 215532000 215532000 215532000 215532000 215532000 215532000 215532000 215532000 215532000 215532000 215532000	Time 34500 34600 34700 34800 35000 35100 35100 35200 35200 35500 25500	Lat 1.25279 1.2506 1 1.24841 1.24622 1.24402 1.24402 1.24183 1.23964 1.23745 1.23479 1.23197 1.22916	Long 103.986 103.974 103.967 103.961 103.954 103.948 103.941 103.935 103.929 103.923
215532000 215532000	35500 35600	1.22916 1.22635	103.923 103.917
Contact T	ime: 11	LOOS	

Contact nodes based on a target MMSI

Simulation Connection with IGW

Simulation Algo Parameters

- R Transmission Radius
- m distance from source node to End
- d distance from contact node to end

MMSI Connection

Mumber of Hops

For MANET system, a dynamic routing protocol is needed

At **14km** radius, **97.5%** of the ships were connected for at least one time period At **14km** radius, there was connection with the IGW **93.8%** of the time At **14km** radius, on average only **1.52** hops were needed for a complete path

Position-Based routing protocol is suited for this system A large number of mobile nodes were handled – 147 MMSI

Further simulations involving:

- 1. various forwarding strategies
- 2. different recovery strategies
- 3. 2 or more Internet Gateway
- 4. Comparative study of GPSR and DREAM
- 5. Other parameters affecting delay time and throughput
- 6. Varied packet size
- 7. Different days and time of raw mobility data

References

Research Papers

- V. Friderikos, K. Papadaki, M. Dohler, A. Gkelias and H. Agvhami, "Linked Waters", IEEE Communications Engineer, 24-27, (April 2005) 1.
- Per Johansson, Tony Larsson, Nicklas Hedman, Bartosz Mielczarek, Mikael Degermark, " 2. Scenario-based Performance Analysis of Routing Protocols for Mobile Ad-Hoc Networks", Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking MobiCom '99, 195-206 (August 1999)
- Hannes Hartenstein, Bernd Bochow, André Ebner, Matthias Lott, Dieter Vollmer, " 3. Position-aware ad hoc wireless networks for inter-vehicle communications: the Fleetnet project", Proceedings of the 2nd ACM international symposium on Mobile ad hoc networking & computing, 259 - 262 (2001)
- Martin Mauve, Jorg Widmer, Hannes Hartenstein, "A Survey on Position-Based Routing in Mobile Ad Hoc Networks", IEEE Network 1 (6): 30-39 4. (December 2001)
- Holger Füßler, Martin Mauve, Hannes Hartenstein, Michael Käsemann, Dieter Vollmer, "A Comparison of Routing Strategies for Vehicular Ad 5. Hoc Networks", TR-02-003, Department of Computer Science, University of Mannheim (July 2002)
- Mon Ghassemian, Philipp Hofmann, Christian Prehofer, Vasilis Friderikos, Hamid Aghvami, "Performance analysis of Internet gateway discovery 6. protocols in ad hoc networks", Wireless Communications and Networking Conference, Vol.1, 120-125, (2004).
- M. Torrent-Moreno, M. Killat, H. Hartenstein, "The Challenges of Robust Inter-Vehicle Communications", In Proceedings of the 62nd IEEE 7. Semiannual Vehicular Technology Conference (VTC-Fall), (September 2005)
- Julio C. Navas, Tomasz Imielinski, "GeoCast-geographic addressing and routing", Proceedings of the 3rd annual ACM/IEEE international 8. conference on Mobile computing and networking. 66 – 76 (1997)
- Rudolf Mathar, Jürgen Mattfeldt, "Optimal transmission ranges for mobile communication in linear multihop packet radio networks". Wireless 9. Networks, Volume 2 Issue 4, 329-342, (1996)
- Samir R. Das, Robert Castañeda, Jiangtao Yan, "Simulation-based performance evaluation of routing protocols for mobile ad hoc networks", 10. Source Mobile Networks and Applications archive, Volume 5, Issue 3, 179 - 189 (2000)
- Josh Broch, David A. Maltz, David B. Johnson, Yih-Chun Hu, Jorjeta Jetcheva, "A performance comparison of multi-hop wireless ad hoc network 11. routing protocols", Source International Conference on Mobile Computing and Networking archive Proceedings of the 4th annual ACM/IEEE international conference on Mobile computing, 85-97 (1998)
- "Shipborne Automatic Identification System (AIS) Fact Sheet", Australian Maritime Safety Authority Canberra, (December 2003) 12.
 - Blue icons from iStockPhoto
 - Graphic: WiMax
 - GPS
 - Credits : Geocasting
 - Satellite
 - Thank You from iStockPhoto

- WiMax Range
- Blue Ship ٠